a) $P(3) = 2\cdot3^2 + 3\cdot3 - 5 = 2\cdot9 + 3\cdot3 - 5 = 18 + 9 - 5 = \boxed{22}$
b) $P(-2) = (-2)^3 - 4\cdot(-2) + 2 = -8 - (-8) + 2 = -8 + 8 + 2 = \boxed{2}$
c) $P(0) = -(0)^2 + 6\cdot0 - 1 = -0 + 0 - 1 = \boxed{-1}$
d) $P(1) = 5\cdot1^3 - 2\cdot1^2 + 7 = 5\cdot1 - 2\cdot1 + 7 = 5 - 2 + 7 = \boxed{10}$
e) $P(-1) = 4(-1)^2 - 9(-1) + 10 = 4\cdot1 - 9\cdot(-1) + 10 = 4 + 9 + 10 = \boxed{23}$
f) $P(4) = \tfrac{1}{2}\cdot4^2 - 3\cdot4 + 4 = \tfrac{1}{2}\cdot16 - 12 + 4 = 8 - 12 + 4 = \boxed{0}$
g) $P(2) = 2^4 - 2\cdot2^3 + 2 - 8 = 16 - 2\cdot8 + 2 - 8 = 16 - 16 + 2 - 8 = \boxed{-6}$
h) $P(-3) = -3\cdot(-3)^3 + (-3)^2 + 2\cdot(-3) - 5 = -3\cdot(-27) + 9 - 6 - 5 = 81 + 9 - 6 - 5 = \boxed{79}$
i) $P(0) = (-1)(2)(-3) = \boxed{6}$
j) $P(-2) = 7\cdot(-2)^2 - 4\cdot(-2) + \tfrac{5}{2} = 7\cdot4 + 8 + \tfrac{5}{2} = 28 + 8 + \tfrac{5}{2} = 36 + \tfrac{5}{2} = \boxed{\tfrac{77}{2}}$